The birthday problem fits into this somehow, but I can’t quite get there right now. Something like an inverse birthday problem to illustrate how, even though the probability of two monkeys typing the same letter rises quickly as more monkeys are added to the mix, and at a certain point (n+1, where n is “possible keystrokes”) it is inevitable that at least two monkeys will key identically, the inverse isn’t true.
If you have 732 people in a room, there’s no guarantee that any one of them was born on August 12th.
There’s another one that describes this better but it escapes me.
The birthday problem fits into this somehow, but I can’t quite get there right now. Something like an inverse birthday problem to illustrate how, even though the probability of two monkeys typing the same letter rises quickly as more monkeys are added to the mix, and at a certain point (n+1, where n is “possible keystrokes”) it is inevitable that at least two monkeys will key identically, the inverse isn’t true.
If you have 732 people in a room, there’s no guarantee that any one of them was born on August 12th.
There’s another one that describes this better but it escapes me.